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Abstract

With the advent of serverless functions, we’re seeing more
and more applications trying to exploit the serverless domain.
This can be attributed to three key benefits offered by server-
less platforms: 1. Functions can be triggered in response to
events, i.e. it adopts an event based programming model.
2. Provisioning and scalability issues are not the concern of
application. 3. Serverless platforms adopt the pay-per-use
model, hence prevent wastage of application resources that
happens either by provisioning too much and hurting bud-
get or provisioning too less and hurting throughput and/or
latency. Machine Learning inference is a throughput and la-
tency sensitive domain since it needs to be done in real-time.
Furthermore, such inference usually involves expensive com-
putations. We study the viability of doing such inference on
serverless platforms. In doing so, we also characterize when
it would be suitable to move from expensive GPU machines
to serverless platforms.

1 Introduction

Serverless architecture (also known as serverless computing
or function as a service, FaaS) is a software design pattern
where applications are hosted by a third-party service, elim-
inating the need for server software and hardware manage-
ment by the developer. Recently cloud providers (e.g., AWS
Lambda, Google Cloud Functions) and open source projects
(e.g., OpenLambda, OpenWhisk) have developed infrastruc-
ture to run event-driven, stateless functions as micro-services.
In this model, a function is deployed once and is invoked re-
peatedly whenever new inputs arrive and elastically scales
with input size.

The advent of serverless functions has spurred an inter-
est across several application domains in trying to adopt a
serverless architecture in order to leverage the benefits of-
fered by these functions. Some examples of such adoption
include PyWren [7] for distributed computing and ExCam-
era [6] for low latency video processing. Although distinct
in their own respects, what is common to these systems is
that they model a time consuming sequential computation as
many small parallel computations. These parallel computa-
tions are then executed concurrently across several serverless
functions, i.e. these systems utilize the serverless platform as
a compute engine.

Machine learning inference consists of executing a query
over a trained model. It usually involves expensive opera-
tions like matrix multiplications, and hence is computation-
ally expensive. Furthermore, inference is usually done on the

critical path of applications (e.g., voice recognition), thereby
making it latency sensitive. Owing to it’s computationally
intensive nature, such inference is usually done on expensive
GPU machines. However, there are opportunities that can be
exploited to speed up inference on CPU, essentially by try-
ing to parallelize the expensive computations. This thereby
opens an application domain which might be benefited by
using serverless platform as a compute engine.

In this work, we present a way for parallelizing machine
learning inference across several serverless functions for deep
convolutional neural network models. In doing so, we describe
a prototype system, SerFer, developed on Python and AWS.
In particular, the contributions of our work are as follows:

1. We provide a framework that orchestrates the execution
of machine learning inference using serverless functions.

2. We evaluate the performance of the framework against
inference using GPU, and characterize the tradeoffs.

3. We provide microbenchmarks for SerFer, pointing out the
time consuming components.

4. We list down the limitations of our work, and guide the
reader towards possible improvements that will help in
realizing the potential of serverless functions in building
throughput and latency sensitive inference applications.

2 Related Works

Although Function as a service (FaaS) is a relatively new
cloud computing service, there are few work in this domain.
PyWren proposed a prototype system developed in python
with AWS Lambda. The main idea in the paper was to seri-
alize required python function using cloudpickle and store it
in an Amazon S3 bucket. Then, a common lambda function
would fetch the data from the S3 bucket, invoke the function,
and write back the results to S3. To address more general
form of distributed computational model, the paper proposes
to use Redis Cluster for data shuffle stages of the computa-
tion. Similar to PyWren, we use Redis Cluster for shuffle
operations in our computations. However, SerFer’s architec-
ture is tailored for inference applications and makes use of
several relevant optimizations.

Tensorflow serving [11] is a serving system designed to serve
machine learning models in production environments, provide
high-performance prediction API to simplify deploying new
algorithms and experiment with new models without modi-
fying frontend applications. Although this system supports a
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variety of hardware and GPU acceleration, deploying this sys-
tem in serverless environment restricts the size of the deploy-
able model due to resource limitations on serverless functions
(e.g. AWS lambda limits the size of the deployment package
to 50MB). Further, since serverless platforms offer only CPU
based microvms, the capabilities of GPU acceleration cannot
be exploited. We address the former issue by utilizing the
lambda layers feature introduced recently by AWS. The lat-
ter is addressed by splitting the model across several lambda
functions to achieve model parallelism.

Locus [13] presents a performance model case study that
brings to light the optimizations that a hybrid storage model
can provide. Storing the intermediate results of serverless
computations by utilising the hybrid model is shown to pro-
duce better performance. Our focus is not just constrained
to storage, but also explores the optimizations introduced
through better parallelization of intra layer computations
across serverless functions.

Clipper [5] presents a general purpose low-latency predic-
tion serving system built on top of existing machine learning
frameworks such as Tensorflow [1] and Pytorch [12], [4]. It re-
duces prediction latency and improves the prediction through-
put, accuracy and robustness by using techniques such as
caching, batching and adaptive model selection. However, it
does not modify the underlying machine learning framework.
Unlike Clipper, we propse to build an end-to-end system for
serving machine learning inference queries using serverless
computing platform.

ExCamera [6] introduces the ”mu” framework to run
general-purpose massively parallel computations by making
lambda workers execute arbitrary linux executables. The mu
platform has a coordinator which is basically a long-lived
server (e.g., an EC2 VM) that launches jobs and controls their
execution. The coordinator describes the logic of a given com-
putation in the form of per-worker finite-state-machine (FSM)
descriptions. The coordinator receives status messages from
workers and triggers the next lambda by applying state tran-
sition logic. Our driver draws parallels to the coordinator,
however, our transitions are based on upload of data in stor-
age rather than messages from the workers.

3 Challenges and Motivation

Serverless computing has the advantages of resource trans-
parency and the pay-per-use model. Further, this platform
relieves the users from the struggles of complex cluster man-
agement and configuration tools for running even simple ap-
plications. However, to fully utilize the above features offered
by the serverless computing platform, we first need to address
the challenges involved in developing an inference system on
serverless platform. In this section, we describe the challenges
and how SerFer addresses them.

3.1 Serverless Platform Limitations

The microvms currently offered by the serverless platform
have several resource limitations. For example, AWS lambda
currently limits the size of the deployment package to 50MB
and the amount of RAM to 3008MB. Such restrictions hinder

deploying modern deep learning models on serverless plat-
form because they typically include millions of floating point
operations and several millions of parameters.

We overcome the limit on package size by utilizing the
lambda layers feature introduced recently by AWS. A layer
is a ZIP archive that contains libraries, a custom runtime, or
other dependencies. With layers, one can use libraries in a
lambda function without needing to include them in your de-
ployment package. This keeps the deployment package small.
SerFer stores the parameters of the model as a dependent li-
brary within the layers and imports it into lambda functions
when required. This method gives a way to increase the pack-
age size to 250MB, which can still be insufficient for many
models. For example, the weights of the fully connected lay-
ers in AlexNet [9] take about 260MB of storage. Additionally,
other dependent packages such as deep learning frameworks
(e.g. Pytorch) require about 100MB of storage size. To ad-
dress this, SerFer quantizes the weights of the fully connected
layers and represents them as 16 bit floating point numbers.
Another approach that SerFer employs is to use global average
pooling layers instead of fully connected layers.

In our experiments with AlexNet, we found that the storage
size of fully connected layers decreased from 260MB to 120MB
after quantization.

3.2 Latency and Throughput

Inference latency is the time taken to render the result for
a given query. Since, machine learning inference systems are
often a part of real time applications, inference must be fast
and have bounded tail latencies to provide smooth experience
to the end user. While traditional machine learning models
such as support vector machine and random forest are fast,
most modern deep neural networks are computationally inten-
sive and hence have substantial latencies. Further, serverless
platform doesn’t currently offer GPU based microvms to ac-
celerate such compute intensive workload. SerFer, splits the
computation involved in a single layer of a neural network
across multiple lambda functions to achieve model level par-
allelism, thereby decreasing the latency. The results of the
model splits are combined by a driver program which orches-
trates the entire computation.

Throughput of a system is determined by the computa-
tional cost of a single query and the amount of resources avail-
able in the system. For example, the throughput of inference
systems is determined by the size of the model and also the
resources such as number of CPU’s and GPU’s in the system.
Hence, higher throughput demands deploying systems with
expensive hardware resources and maintaining them during
idle time. To address this, we utilize the auto-scaling feature
of the serverless platform to process independent queries in
parallel. Further, this approach is cost effective since the user
does not have to pay during idle time.

4 Architecture

We envision SerFer to consist of several Drivers under a Load
Balancer (Figure 1). Each Driver orchestrates the execution
of assigned inference queries by utilizing serverless platform
and shared storage.
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Figure 1: SerFer Architecture

Figure 2: Driver Architecture

SerFer distributes the computations involved in an inference
query across multiple lambda functions by partitioning the
layers of the neural network and creating a lambda function
corresponding to each partition (Figure 2). Then, an input
query (image) is passed through the sequence of lambda func-
tions, transforming it into the corresponding output. Each
lambda function reads its input from a shared storage and
writes its output back to the shared storage.

SerFer Architecture has the following components:

4.1 Model Splitter

Model Splitter maps the computations involved in a given
Convolutional Neural Network (CNN) on to several lambda
functions. Given a Deep Convolutional Neural Network with
L layers, Model Splitter partitions these layers into K parti-
tions P1, P2, ..., PK with l1, l2, ..., lK layers respectively. For
each partition Pi, a corresponding lambda function Fi is cre-

ated, which is responsible for the computations involved in
partition Pi. If a lambda function Fi does not contain fully
connected layers, then the input activation map to Fi is di-
vided into C (currently C = 4) overlapping partitions and fed
to C instances of lambda function Fi to achieve model level
parallelism. We refer to the C instances of lambda function
Fi as lambda layer Li (Figure 2). In contrast, if a lambda
function Fi consists of a fully connected layer, then a single
copy of Fi would process the input activation map. In a fully
connected layer, each neuron in the input is connected to all
the neurons in the output. Hence, there is no simple way to
efficiently map the computations involved in a fully connected
layer on to multiple lambda functions.

We choose the number of neural network layers li in lambda
function Fi based on the storage size Si of the parameters
corresponding to the li layers in lambda function Fi. Since,
AWS limits the size of the deployment package of each lambda
function to 250MB, we have the following constraint on S′

is

Si + D < M ∀i ∈ {1, 2, ...,K} (1)

Currently, M = 250MB and D is the size of the other
libraries and dependencies required by the lambda function.

4.1.1 Optimizations

Since, deep convolutional neural networks with fully con-
nected layers (e.g. AlexNet) can easily violate constraint 1,
SerFer employs the following two optimizations for CNN’s
with fully connected layers:

1. Quantization: If the storage size Si is found to vio-
late constraint 1, Model Splitter automatically quantizes
the weights corresponding to lambda function Fi to 16
bit floating point values. This reduces the storage re-
quirement approximately by a factor of two. We prefer
this technique since neural networks are robust to noise
injection [2].

2. Global Average Pooling layers: If the storage size
violates the constraint 1 even after quantization, then
Model Splitter replaces the fully connected layers with
Global Average Pooling layers (GAP) [10], which does
not have any parameters to be stored. Such optimiza-
tion decreases the accuracy by less than 2%, e.g. for
AlexNet with GAP layers, the test error on ImageNet
dataset increases by about 1.3% [14].

4.2 Driver

The Driver orchestrates the inference and will have the follow-
ing responsibilities. Upon the arrival of a query Q (image), it
splits it into C overlapping parts, uploads them to the shared
storage and invokes lambda layer L1. By invoking lambda
layer L1, we mean instantiating C copies of the lambda func-
tion F1 to process C partitions of the input image in parallel.
Then, it polls the shared storage to check if the outputs O′

1s
(activation maps) of C copies of lambda function F1 are avail-
able. Once the C outputs O′

1s are available, the driver merges
them, splits them into appropriate sizes for the next lambda
layer L2 (Appendix A), uploads them to shared storage and
invokes lambda layer L2. This procedure is repeated for all
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other lambda layers and the final output of lambda layer LK

is returned back to the client.

4.3 Worker

Worker is a lambda function which implements a certain num-
ber of layers of the given neural network model. Each lambda
function Fi stores the weights of the CNN layers that it im-
plements and other dependent libraries (e.g. deep learning
framework used) as AWS lambda layers and imports them
during runtime. Further, each lambda function reads its input
from the shared storage and writes its output to the shared
storage.

4.4 Storage

Since serverless functions are stateless, all the intermediate
state of the computation is stored in a Storage component. In
particular, each lambda layer reads its input from the shared
storage and writes its output back to the shared storage. The
driver writes the input image to the shared storage before
invoking the first lambda layer L1.

We don’t tightly couple the system with any specific storage
and aim to have flexibility to use S3, Redis, Pocket [8], Locus
or any such storage or performance model beneficial for our
use case.

4.5 Workflow

Using the aforementioned components, an end-to-end work-
flow would be as described by Figure 2.

1. Query (image) arrives at the Driver.

2. Driver splits the image into C partitions, uploads them
to shared storage and invokes lambda layer L1.

3. Lambda Layer L1 reads its input from the shared storage.

4. Lambda Layer L1 writes back the results of its compu-
tations to shared storage.

5. Driver reads the output of lambda layer L1, performs
merge and split operations and writes back the new splits
to the shared storage. This process is repeated for all
other lambda layers.

6. The Driver reads the final output of lambda layer LK

and returns it to the client.

5 Implementation

We’ve implemented SerFer using AWS EC2 instances for the
Driver, S3 and Redis for intermediate store and AWS Lambda
for serverless functions. We describe our implementation in
more detail in the following subsections. Our implementation
can be found in the github repository https://github.com/

danish778866/serFer.

5.1 Execution Engines

Execution engine (Driver) is the component of SerFer that
orchestrates the end-to-end execution of inference. We imple-
mented polling and step functions based execution engines.

5.1.1 Poll Driver

Poll Driver is implemented in an AWS EC2 instance. The
flowchart of the execution in Poll Driver is shown in Fig-
ure 3. Barrier is essentially where the polling happens,
i.e. the Driver polls the Storage to check the presence of
all intermediate results required for the next lambda layer.
NUM LAYERS is the total number of lambda layers present
in the inference, as returned by the Model Splitter (This is
referred to as K in Section 4).

Figure 3: Flowchart for Poll Driver

5.1.2 Step Function Driver

The Poll Driver (Section 5.1.1), as the name suggests was
designed to check for the completion of tasks by polling for
expected output files in storage. The continuous polling may
add overhead to the communication between Driver and Stor-
age, which may cause adverse effects on latency. We, hence
explored using step functions as the Driver ecosystem, with
the status of tasks driving the execution model. AWS Step
Functions helps string together multiple AWS services into
serverless workflows. The workflows are made up of tasks,
where we can use the output of one task as an input to the
next. Step function automatically triggers and tracks each
task, and hence removes the need for continuous polling from
the Driver. In our implementation of the step function (Fig-
ure 4), the state starts with the Split Image lambda, and then
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the output of the function is passed onto the next task, which
is a parallel task, comprising of lambda layer L1. Step func-
tion ensures the order of execution and allows concurrency
with the parallel task Function in case of no dependencies.
After the successful completion of all the parallel tasks, the
state of the parallel task function transitions to Succeeded,
eliminating the need to poll for the successful completion of
each task. The result of each task is the key name of the input
that has been stored in Redis by the preceding task. The step
function is triggered by a Driver running on the EC2 instance,
and the final output is returned back to the Driver, which is
then available to the user.

Figure 4: State Machine for Step Function Driver

5.2 Storage

Serverless functions are stateless, hence the state has to be
maintained in an intermediate store. There is a lot of re-
search going on in order to optimize the intermediate store
for serverless functions (e.g., Pocket). Hence, SerFer stor-
age has been designed to be extensible. Any Storage can be
plugged into the Driver by extending the interface defined in
Listing 1.

c l a s s S e r f e rS t o r ag e (ABC) :
# Es tab l i sh connect ion to the s to rage
de f p r epa r e s t o r ag e ( s e l f ) :
# Get connect ion ob j e c t
de f g e t s t o r a g e hand l e ( s e l f ) :
# Write key conta in ing data to the s to rage
de f w r i t e t o s t o r e ( s e l f , key , data ) :
# Read data cor re spond ing to key from the
s to rage
de f r e ad f r om s to r e ( s e l f , key ) :
# Check i f key e x i s t s in the s to rage
de f c h e c k i f e x i s t s ( s e l f , key ) :

Listing 1: SerFer Storage Interface

5.2.1 S3

Amazon S3 or Amazon Simple Storage Service is a ”simple
storage service” offered by Amazon Web Services that pro-
vides object storage through a web service interface. Amazon
S3 uses the same scalable storage infrastructure that Ama-
zon.com uses to run its global e-commerce network. We used
S3 as one of the storage backends for SerFer, implementing
the interface given in Listing 1.

5.2.2 Redis

Redis is an in-memory data structure project implementing
a distributed, in-memory key-value database with optional
durability. Redis supports different kinds of abstract data
structures, such as strings, lists, maps, sets, sorted sets, Hy-
perLogLogs, bitmaps, streams, and spatial indexes. We used
Redis as one of the storage backends for SerFer, implementing
the interface given in Listing 1 (refer Section 4).

5.3 Serverless Functions

We used the serverless platform provided by AWS, i.e. AWS
Lambda. Our implementation is currently restricted to
AlexNet and its variants (e.g. AlexNet with Global Aver-
age Pooling layers). However, extending this to other CNN
architectures would be straightforward, since it just involves
automating the process of generating the lambda functions
F ′
is.
For our AlexNet implementation, we have three lambda

functions, F1, F2 and F3). Lambda functions F1 and F2 con-
sists of convolutional layers with relu activation and max pool-
ing layers. Hence, we instantiate four copies of F1 and F2 each
to process a single query. Lambda function F3 contains fully
connected layers and only a single copy of F3 is instantiated
for each query.

6 Evaluation

Due to time constraints, we didn’t evaluate SerFer system
as envisioned in Figure 1. Instead, we evaluated the SerFer
Driver as depicted in Figure 2. We don’t think this should be
a problem since adding multiple Drivers under a load balancer
to serve given throughput and latency constraints should be
straightforward, given that the Driver in itself has been evalu-
ated individually, i.e. we’re aware of the throughput/latency
that a given Driver can support.

Our evaluations were targetted to answer the following
questions:

1. What are the time consuming components in the SerFer
Poll Driver? (Section 6.2)

2. How does the tail latency of a burst inference workload
on SerFer compare to that on a GPU machine? (Section
6.3.1)

3. What is the relationship between performance of a SerFer
Driver with respect to inference burst sizes? (Section
6.3.2)

4. What does the cost model look like for deploying SerFer?
(Section 6.4)
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6.1 Experimental Setup

AWS t2.xlarge instance with Ubuntu 18.04 image was used for
running SerFer Driver. For experiments that use GPU, AWS
p2.xlarge (NVIDIA Tesla K80 GPU) instance with Ubuntu
18.04 image was used. Pytorch Framework was used for serv-
ing inference queries. SerFer experiments performed are men-
tioned in Table 1. GPU experiments were performed on burst
sizes of 8, 32, 64, 128, 256, 1000 with a total of 16000 inference
queries. These numbers were chosen to help us compare GPU
serving system with SerFer.

Traffic Driver Number
of Im-
ages

Sleep
Time
per
burst
(s)

Images
per
burst

Burst Poll 1000 0 1000
Burst Poll 500 0 500
Burst Poll 250 0 250
Burst Poll 100 0 100
Uniform Poll 1000 1 1
Uniform Poll 1000 0.2 1
Uniform Poll 1000 0.02 1
Uniform Step

Func-
tion

1000 0.8 1

Uniform Step
Func-
tion

400 0.8 1

Uniform Step
Func-
tion

200 0.8 1

Uniform Step
Func-
tion

100 0.8 1

Uniform Step
Func-
tion

10 0.8 1

Table 1: SerFer experiments

Our experimental data should be interpreted with the fol-
lowing points in mind:

1. In all our experiments, there was a limit of 1000 to
the number of concurrent lambda executions across all
lambda functions.

2. Microbenchmark evaluations have only been presented
for the burst experiments.

3. S3 as an intermediate store performed very bad as com-
pared to Redis, for example, inference of a single query
took around 13 seconds as opposed to that of 1.5 seconds
using Redis. Hence, we didn’t include evaluations using
S3 as the intermediate store.

4. The performance of Poll Driver was superior to that of
Step Function Driver. Furthermore, the Step Function
Driver was experiencing few failures for burst experi-
ments. Hence, we only evaluated Poll Driver extensively.

6.2 Microbenchmarks

The following microbenchmarks were performed for quantify-
ing the time spent across various SerFer components:

6.2.1 Redis Operations Time

Figure 5 shows microbenchmarks for Redis read and write
operations. Since polling in Poll Driver checks the existence
of a given key by reading it from the store, the read time is
expensive. However, 95 percentile for read is still less than a
second. As can be seen by referring to Figure 12, write time
is neglible as compared to the overall inference time.

Figure 5: CDF for Redis Operations

6.2.2 Lambda Layers Time

Figure 6 shows the time required for each lambda layer.
Lambda layer 3 is consuming more time and has a 95 per-
centile latency around 2.5 seconds. As can be seen by refer-
ring to Figure 12, the fraction of time taken by other two
lambda layers is minimal as compared to the overall inference
time.

Figure 6: CDF for Lambda Layers

6.2.3 Poll Time

Figure 7 shows the time spent polling the storage for the pres-
ence of intermediate results by the Poll Driver. 95 percentile
stands pretty decent at around a second.
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Figure 7: CDF for Polling in Poll Driver

6.2.4 Merge and Split Time

Figure 8 shows the time spent by the Poll Driver for perform-
ing merge and split operations as mentioned in the Figure 3.
Split takes more time since it involves creating a copy of acti-
vation maps. However, as can be seen by referring Figure 12,
both merge and split consume negligible fraction of inference
time.

Figure 8: CDF for Merge and Split in Poll Driver

6.3 Performance

In this section, we evaluate the performance of SerFer with
respect to traffic type, burst size and against GPU.

6.3.1 SerFer vs GPU

Figure 9: GPU throughput vs
Burst Size

Figure 10: Poll Driver
throughput vs Burst Size

Figure 11: GPU latency vs
Burst Size

Figure 12: Poll Driver latency
vs Burst Size

Figures 9 and 10 show the relationship between throughput
and burst size for GPU and SerFer respectively. Even though
the throughput on GPU is better, scaling characteristics of
SerFer is better than that of GPU.

Figures 11 and 12 show the relationship between latency
and burst size for GPU and SerFer respectively. While the
latency of GPU based system increases linearly with burst
size, this is not the case with SerFer. In fact, latency of SerFer
system is relatively unaffected by burst size.

6.3.2 Performance vs Burst Size

Latency increases slightly with increase in the burst size (Fig-
ure 12). However, the effect is not much pronounced. 95
percentile for latencies is around 4 seconds. A few queries
have extremely bad latencies. A possible reason for this is
explained in Section 9.2.

Throughput increases with the increase in burst size (Figure
10), this demonstrates the scaling characteristics of SerFer,
and hence that of serverless functions.

6.3.3 Uniform Traffic

Figure 13 shows the CDF for latencies of 1000 inference
queries simulated using multiple uniform traffic patterns. It
can be observed that as the time interval between consecutive
queries decreases, the fraction of queries with higher latencies
increases and almost coincides with that of burst workload
with 1000 queries.

Figure 13: CDF for Latencies for uniform traffic in Poll Driver

Figure 14 shows the CDF of latencies for the Step Function
Driver for different batch sizes. Step function has a limit with
respect to the number of invocations per second, because of
which burst requests have huge failure rates. We provided
a uniform rate of incoming requests (inter-request gap of 0.8
seconds).

7



Figure 14: CDF for Latencies in Step Functions Driver

6.4 Cost

As mentioned in Section 5, SerFer divides the AlexNet model
into three lambda functions. The cost of each lambda func-
tion, based on the resource requirements as given by AWS
is listed in Table 2. This table also includes the average
time taken by each lambda function, as measured by our mi-
crobenchmarks.

F C Memory
(MB)

CP($) A(ms)

1 4 512 0.000000834 124
2 4 1216 0.000001980 116
3 1 2048 0.000003334 3881

Table 2: SerFer Cost Evaluation

Where
F - Lambda Function
C - Number of input splits for lambda function
CP - Cost per 100ms
A - Average time for lambda function

The cost of each inference query would then be given
by equation 2.

Cost =
1

100
× Σ3

i=1li × CPi ×Ai (2)

Hence, each inference query on our setup costs
0.00014271638$. Additionally, the Driver and Storage have
their own respective costs. However, these costs are amor-
tized over several inference queries. Table 3 summarizes the
cost of each component of SerFer.

Component Cost
Lambda Functions $0.00014271638/query
Driver $0.188/hour
Redis Cluster $0.216/hour

Table 3: Cost of Individual Components

From Figure 10, we see that the throughput of SerFer scales
linearly with burst size. Assuming uniform burst size of 1000,
the number of queries that would be processed per hour would
be about 24000. Therefore, total cost of the SerFer system
per hour would be $3.829.

For a similar burst size, the throughput of a GPU based
serving system would be 130 queries/second (refer Figure 9).
Hence the cost to process 24000 queries would be $0.0508
(Currently, AWS p2.xlarge instance costs $0.9/hour).

Although, the cost of SerFer system is higher than that of
GPU based serving system, this calculation only takes into
consideration the processing cost on GPU and ignores idle
time. If such idle time exists for GPU serving system, it would
result in underutilization of expensive hardware resources.
We believe that further optimizations can help improve the
cost of SerFer system.

SerFer is preferable as an inference system for applications
with significant idle time and which only require near real-
time inference.

7 Conclusion

The adoption of serverless platforms is growing across dif-
ferent application domains. In this work, we demonstrated
that serverless platforms shows promise for machine learning
inference at scale. We proposed a system for performing in-
ference of convolutional neural network models and presented
evaluations for the performance and cost of the system. We
believe that co-designing inference systems on serverless plat-
forms along with the models it is targeted for, would enable
such systems to serve the high throughput and low latency
requirements of machine learning inference applications.

8 Future Work

Additional optimizations and extensions are possible in the
components of SerFer. We believe that these optimizations
would bring to light the capabilities of serverless platforms
for inference applications.

8.1 Generalize to various model architec-
tures

We’ve restricted our implementation to serving of AlexNet
model. However, generalizing SerFer to work for other CNN
model architectures would be straightforward. We plan to
automate this process in the future. Further, extending this
system to serve other architectures such as Recurrent Neural
Networks (RNN) would be an interesting future direction.

8.2 Storage

As mentioned before, optimizing storage for serverless func-
tions is an open area of research. It would be a good idea
to evaluate SerFer with such storage systems (e.g., Pocket)
as its storage backend. Furthermore, Redis storage used in
our work isn’t sharded. It might be useful to evaluate Ser-
Fer with a sharded Redis cluster as its storage backend. This
way, SerFer can leverage the performance benefits offered by
distributed storage in order to improve its own performance.
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8.3 Caching

Yet another area of research to speed up machine learning
inference involves caching the input queries and intermediate
results (e.g., freeze inference). Such techniques can be used
in order to improve SerFer serving.

9 Discussion

We’ve studied the viability of serverless platforms (specifi-
cally, AWS lambda) for performing inference at scale. While
doing so, we made some interesting observations. We discuss
a select few of them in the subsequent subsections.

9.1 Warm Start and Cold Start effects

AWS executes lambda functions in a secure and fast microvm
called firecracker [3]. Such microvms are instantiated on de-
mand and are kept alive for around 15 minutes after their
first use, suspecting reuse of the lambda. This is known as
a warm start of lambda function, i.e. a microvm is already
available for execution. On the contrary, if no microvms are
available when an execution of a lambda function is requested,
a new microvm has to be instantiated, known as cold start
of lambda function. Irrespective of however fast the instan-
tiation of these microvms is, they still take some time to in-
stantiate and establish dependencies. During this time, the
corresponding execution has to wait, thereby hurting latency
sensitive applications on startup. This shouldn’t be a problem
for a considerably busy application, however, such cold starts
can still be avoided by using one of the following approaches:

1. The system can be warmed up using some dummy re-
quests before serving real-time traffic.

2. Cloudwatch ping events can be configured to ping the
lambda functions every once in a while, thereby keeping
one microvm of each such lambda always warm. How-
ever, this still doesn’t avoid cold start if multiple events
arrive simultaneously thereby triggering the execution of
a particular lambda function concurrently.

3. The problem with the above approach can be solved by
creating a wrapper lambda which basically just invokes
the required amount of concurrent lamdas for the lambda
functions. The lambda function then should be written
in a way that it can recognize such invocations and just
do some default actions under such scenarios. However,
this approach is a hack and makes it hard to reason about
cost.

9.2 Nice-to-Have

AWS lambda has a limit on the number of lambdas that can
be executed concurrently across all lambda functions. Once
the number of concurrent executions surpass this limit, ad-
ditional requests are queued at the AWS lambda scheduler.
This causes a problem for SerFer in the following scenario.

1. Let’s assume that 996 lambdas are executing concur-
rently at the moment, also lets assume that concurrent
lambda execution limit is 1000.

2. Let’s say that two queries, i.e. Q1 and Q2 are submitted
to SerFer concurrently.

3. The Driver splits the two queries into four pieces each,
lets say q11, q12, q13 and q14 for Q1 and q21, q22, q23 and
q24 for Q2.

4. The Driver invokes the function F1 (refer Section 4) for
each split of input for Q1 and Q2.

5. Let’s say that the functions corresponding to the splits
q11, q12, q21 and q22 start executing, thereby making the
number of lambda functions concurrently executing equal
to 1000. The lambda functions for the splits q13, q14, q23
and q24 are hence queued at AWS lambda scheduler.

6. For each query, the Driver has to wait for the execution
of lambda function on all splits before moving on to the
next lambda layer. However, we don’t really know the
queue depth at which lambda functions corresponding to
each input split of a given query will get executed.

7. This implies that the latency of such queries is worsened
just because the lambda function corresponding to 1 (or
possibly few) of it’s input splits haven’t been processed.

One way to avoid this could be to assign a priority to each
lambda invocation. However, AWS Lambda doesn’t support
this as of now, but it would have been nice-to-have.
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Appendices

A Merge and Split Logic

In this section, we describe how the Driver merges the activation output of lambda layer Li and splits them before feeding
them to lambda layer Li+1. We assume number of partitions C = 4. For simplicity, we further assume that each lambda
function contains computation corresponding to one neural network layer only, i.e. li = 1 ∀i ∈ 1, 2, ...K.

For convolutional and pooling layers, the size of the input activation volume (N,Cin, Hin,Win) and output activation
volume (N,Cout, Hout,Wout) are related as give by equations 3 and 4.

Hout =
Hin + 2× padding[0]− dilation[0]× (kernelsize[0]− 1)− 1

stride[0]
+ 1 (3)

Wout =
Win + 2× padding[1]− dilation[1]× (kernelsize[1]− 1)− 1

stride[1]
+ 1 (4)

Assume (Ci, Hi,Wi) and (Ci+1, Hi+1,Wi+1) to be the size of the input and output activation volumes of lambda layer Li.
Then, the driver splits the input volume into 4 overlapping volumes each of size (Ci,

Hi

2 + ∆H , Wi

2 + ∆W ). Here, ∆H and

∆W are chosen such that the size of the output of each copy of lambda function Fi is equal to (Ci+1,
Hi+1

2 , Wi+1

2 ). The value
of ∆H and ∆W that satisfy this constraint are given by equations 5 and 6.

∆H =
kernelsize[0]− 1

2
(5)

∆W =
kernelsize[1]− 1

2
(6)

Since, our actual implementation contains more than one layer in each lambda function, we repeatedly apply equations 5
and 6 to all the layers to get the values of ∆H and ∆W . Merging involves concatenating the activation outputs of each of
the 4 copies of lambda function Fi.
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