
Robust 3D Object Detection for Autonomous Vehicles using Sensor Fusion
Final Report

Mohan Rao Divate Kodandarama
University of Wisconsin-Madison

Madison, WI
divatekodand@wisc.edu

Aditya Rungta
University of Wisconsin-Madison

Madison, WI
arungta@wisc.edu

Abstract

Accurate detection of objects in 3D is a central problem
in autonomous navigation. Although, there are some works
in this area, most of them suffer from one of these prob-
lems - poor accuracy at far off range and poor accuracy on
minority classes. In this work, we try to address some of
these by fusing multi-sensor (Image and LiDAR) informa-
tion. More formally, we augment the true point cloud data
obtained form a lidar sensor, with pseudo point-cloud data
generated from a combination of corresponding monocular
image and range view of the true lidar data.

1. Problem Definition & Motivation
3D object detection is a fundamental problem in the do-

main of self-driving cars. It’s very important to have an ac-
curate solution to this problem for the future of self-driving
cars and hence, extensive research is going on in this area
in order to be as close to perfection as possible. We have
tried to make some improvements upon some of the exist-
ing works.

In our work, we intend to explore the viability of aug-
menting the point cloud with pseudo-LiDAR data gener-
ated form monocular images. More formally, the problem is
to predict accurate depth map from monocular images and
project the points in 3d to augment the point cloud.

[13] utilizes a similar approch to augment the point cloud
with Pseudo-LiDAR points. However, they make use of
stereo images to generate Pseudo-LiDAR data.

2. Related Work
[9] is one of the first papers that proposed an architecture

for processing point cloud data. It processes each point in
the point cloud independently and uses a symmetric oper-
ation like max or sum to derive a global descriptor of the
point cloud. [10] improves [9] by utilizing hierarchical fea-
tures and weight sharing (inspired by CNN architecture).

[14] further improves [9] by modelling the relationship be-
tween the points in a point cloud using graph convolutions.
Our approach uses [12] which internally uses [10] to com-
pute pointcloud features.

[16] is one of the first papers that proposed an end-to-end
learnable system for 3D object detections using point cloud
data. It divides the 3D world into voxels, computes voxel-
wise features and employs 3D convolutional network as a
detection head .However, expensive 3D convolution opera-
tions resulted in very high inference latency. [6] refines the
architecture of [16] by eliminating 3D convolution opera-
tions and utilizing better loss function [7].

[12] takes a two stage approach and is inspired by the
highly successful RCNN framework for 2D object detec-
tion. The first stage of the network, segments the fore-
ground and background points and also output per point
bounding box. The second stage filters the overlapping pro-
posal by using region based pooling and then refining the
proposal in canonical coordinates. We use [12] as a detec-
tion head in our end-to-end architecture. We consider this
because of its low latency and high performance.

[8] uses LiDAR data as range view images. It uses a fully
convolutional network to predict a multimodal distribution
over 3D boxes for each point and then it uses a clustering
algorithm to fuse the predicted distributions.

3. Approach
Our fusion based approach for 3D Object Detection is

outlined below.

1. Estimate per pixel depth from monocular im-
ages(Depth map prediction) - Our depth prediction
network is based on [4]. However, as shown in Figure
1 our architecture utilizes both input monocular image
and point cloud data. The encoder network consists of
two resnet18 based feature pyramid encoders one for
encoding Image data and the other for encoding lidar
data. We project all the lidar points on to the image
plane to obtain a range view representation of the lidar

1



data that can be fed into the encoder network. Image
features and LiDAR features are fused using simple el-
ementwise addition operation.

The decoder is a dual of the each branch of the encode
and predicts per pixel depth. Similar to [11], we use
skip connections between the layer of encoder and de-
coder.

Since it is very difficult to obtain ground truth data for
depth of every pixel, we formulate the problem as a
self-supervised learning problem where we minimize
the photometric re-projection error between two im-
ages captured at adjacent time frames at training time.

Figure 2 shows an example output depthmap generated
using our augmented model.

Figure 1. Architecture of our model for predicting the depthmap

Figure 2. Estimated disparity map for an image from the KITTI
dataset using our augmented model

2. Project all images pixel to 3D space (LiDAR
Coordinates)- Once the per pixel depth estimate is
available, all the images pixels can be projected into
3D space using the camera intrinsic matrix K (avail-
able as a part of calibration data in [3]). More for-
mally, the image pixel at location (i, j) with the esti-
mated depth Di,j can be projected into 3D according
to equation 1.

Qi,j = Di,jK−1[i, j, 1]T (1)

3. Alignment and Filtering - Unlike stereo, Pseudo-
LiDAR generated by monocular images would not be
perfectly aligned with the LiDAR (This is evident in
Figure 5). Further, the predicted depth map would have
to be scaled to match the scale of the true point cloud.
We find the scaling and scale the predicted depth map
as follows -

(a) Find the average of absolute depth of all the
points in the original point cloud.

(b) Find the average of absolute depth of all the
points in the predicted point cloud.

(c) Scaling factor would be the ratio of average depth
of original point cloud to the average depth of the
predicted point cloud (pseudo point cloud).

After scaling the pseudo point cloud, we filter out the
points in the pseudo point cloud that are very far from
the original point cloud. This is done to prevent the
corruption of the original point cloud by the pseudo
points. More formally our algorithm is described be-
low -

(a) Insert all points from the original point cloud in
a KD-Tree.

(b) Iterate through all the predicted pseudo points
and filter out points that are away from the origi-
nal point cloud by a predefined threshold.

The filtering operation can be made fast by using a
multi-threaded implementation of KD-Tree and pro-
cessing pseudo points in parallel.

4. 3D Object Detection - Once the augmented point
cloud is available, use [12] for detecting 3D objects.

Figure 3. Our end to end architecture taking the monocular images
and lidar projection on 2D plane as input and finally generating
bounding boxes for 3D object detection

3.1. Datasets

We are using the KITTI dataset for all our experiments.

1. For training the depth prediction network we used the
the KITTI RAW dataset.

2

http://www.cvlibs.net/datasets/kitti/


2. For final 3D object detection results, we use KITTI 3D
Object detection benchmark dataset

4. Experiments and Results

Figure 4. LIDAR point cloud corresponding to the above image

Figure 5. The disparity image above is obtained by inputting the
monocular image into our depthmap prediction model.This dispar-
ity image is then processed to get the depthmap. Pseudo-LiDAR
is finally generated by projecting the RGBD (Estimated Depth) in
3D.

Our model consists of an encoding module and a decod-
ing module. The encoding module is comprised of two
resnet-18 models. One of these resnet-18 models is re-
sponsilble for creating an encoding of the monocular image
and the other resnet-18 model is responsible for encoding
the lidar projected on a 2D space. We used the pretrained
resnet-18 encoder for the monocular images and froze its
layers while training. Only the encoder for lidar projec-
tion is trained. The output encodings are then combined by
adding and fed into the decoder. Our decoder consists of
6 upsampling layers such that it reconstructs a depthmap
with the same dimension as the input. The 3D object de-
tection model that we have used is Point RCNN which is
pretrained.

We used the KITTI dataset for all our experiments. For
training our depthmap architecture, we made use of the
KITTI raw dataset. For getting the results for 3D object de-
tection, we used the KITTI 3D Object detection benchmark
dataset.

We have made use of the Adam’s optimizer in our train-
ing. Our depthmap architecture is trained for 20 epochs.

Figure 6. Depthmap prediction using our depthmap architecture
for 2 images from the KITTI dataset.

Figure 6 show the estimated depth for images from
KITTI RAW eigen split. We also have some quantitative re-
sults for depthmap prediction and we have comapred them
with the results quoted in [4] and our results turn out to be
better. Figure 7 shows the comparison of the depthmap pre-
diction results. abs rel is the relative absolute error which is
basically equal to:
abs rel = abs(gt depth−predicted depth)

gt depth
As you can see in Figure 7, the abs rel as well as some other
errors reported using our method are significantly smaller
than the ones reported in [4].

Figure 5 shows the generated Pseudo-LiDAR data. It is
evident that the generated Pseudo-LiDAR data does not per-
fectly align with the point cloud data and requires alignment
and filtering.

To evaluate our final 3D object detection results, we have
focused on detecting the car category which has an IOU
threshold of 0.7. We have compared the 3D object de-
tection results obtained using our method with the results

3

http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d


Figure 7. Comparison of depth map prediction results using [4]
and our method. The table above is using [4] and the table below
represents our results.

quoted in [12]. As you can see in Figure 8, the average pre-
cision values across all the three categories have a sizable
improvement using our method as compared to the results
reported in [12]. We attribute this improvement to the qual-
ity of our augmented point cloud and believe that the results
can be improved further by employing more sophisticated
techniques to filter the pseudo point cloud and align it with
the original point cloud.

Figure 8. Comparison of 3D object detection results using [12]
and our method. The table above is using [12] and the table below
represents our results.

5. Future Work
We can incorporate the following improvements in our

architecture -

1. Although, we feed in the original point cloud into the
depth prediction network, our current network does not
explicitly enforce the predicted depth map to be con-
sistent with the original point cloud. We could poten-
tially improve the depth prediction by enforcing ex-
plicit constraints on the predicted output.

2. We can eliminate the filtering stage by only projecting
the pseudo points corresponding to the objects. This

can be accomplished by segmenting the objects form
the image.

3. We currently train the depth prediction network and the
object detection network separately. We could poten-
tially improve the performance by end-to-end training.

6. Code
Code for all our experiments are available at github-link.
Use depth prediction branch to reproduce our results.

References
[1] Ming-Fang Chang, John Lambert, Patsorn Sangkloy, Jag-

jeet Singh, Slawomir Bak, Andrew Hartnett, De Wang, Peter
Carr, Simon Lucey, Deva Ramanan, and James Hays. Argo-
verse: 3d tracking and forecasting with rich maps. In The
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), June 2019.

[2] Mark Everingham, Luc Gool, Christopher K. Williams, John
Winn, and Andrew Zisserman. The pascal visual object
classes (voc) challenge. Int. J. Comput. Vision, 88(2):303–
338, June 2010.

[3] A Geiger, P Lenz, C Stiller, and R Urtasun. Vision meets
robotics: The kitti dataset. The International Journal of
Robotics Research, 32(11):1231–1237, 2013.

[4] Clément Godard, Oisin Mac Aodha, and Gabriel J. Bros-
tow. Digging into self-supervised monocular depth estima-
tion. CoRR, abs/1806.01260, 2018.

[5] Jason Ku, Melissa Mozifian, Jungwook Lee, Ali Harakeh,
and Steven Lake Waslander. Joint 3d proposal genera-
tion and object detection from view aggregation. CoRR,
abs/1712.02294, 2017.

[6] Alex H. Lang, Sourabh Vora, Holger Caesar, Lubing Zhou,
Jiong Yang, and Oscar Beijbom. Pointpillars: Fast en-
coders for object detection from point clouds. CoRR,
abs/1812.05784, 2018.

[7] Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, Kaiming He,
and Piotr Dollár. Focal loss for dense object detection.
CoRR, abs/1708.02002, 2017.

[8] Gregory P. Meyer, Ankit Laddha, Eric Kee, Carlos Vallespi-
Gonzalez, and Carl K. Wellington. Lasernet: An effi-
cient probabilistic 3d object detector for autonomous driving.
CoRR, abs/1903.08701, 2019.

[9] Charles Ruizhongtai Qi, Hao Su, Kaichun Mo, and
Leonidas J. Guibas. Pointnet: Deep learning on point sets for
3d classification and segmentation. CoRR, abs/1612.00593,
2016.

[10] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J.
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. CoRR, abs/1706.02413, 2017.

[11] O. Ronneberger, P.Fischer, and T. Brox. U-net: Convolu-
tional networks for biomedical image segmentation. In Med-
ical Image Computing and Computer-Assisted Intervention
(MICCAI), volume 9351 of LNCS, pages 234–241. Springer,
2015. (available on arXiv:1505.04597 [cs.CV]).

4

https://github.com/divatekodand/cs838_project


[12] Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li. Pointr-
cnn: 3d object proposal generation and detection from point
cloud. CoRR, abs/1812.04244, 2018.

[13] Yan Wang, Wei-Lun Chao, Divyansh Garg, Bharath Hariha-
ran, Mark Campbell, and Kilian Q. Weinberger. Pseudo-lidar
from visual depth estimation: Bridging the gap in 3d object
detection for autonomous driving. CoRR, abs/1812.07179,
2018.

[14] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma,
Michael M. Bronstein, and Justin M. Solomon. Dy-
namic graph CNN for learning on point clouds. CoRR,
abs/1801.07829, 2018.

[15] Hengshuang Zhao, Li Jiang, Chi-Wing Fu, and Jiaya Jia.
Pointweb: Enhancing local neighborhood features for point
cloud processing. In The IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), June 2019.

[16] Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning
for point cloud based 3d object detection, 2017.

5


